p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4.6D4, C22⋊2SD16, C23.43D4, C4⋊C4⋊2C22, C22⋊C8⋊9C2, (C2×C8)⋊6C22, (C2×C4).24D4, C4.22(C2×D4), C22⋊Q8⋊1C2, D4⋊C4⋊9C2, (C2×SD16)⋊9C2, (C2×Q8)⋊1C22, C2.6(C2×SD16), C2.11C22≀C2, C2.8(C8⋊C22), (C2×C4).84C23, (C22×D4).8C2, C22.80(C2×D4), (C2×D4).54C22, (C22×C4).45C22, 2-Sylow(CO-(4,3)), SmallGroup(64,131)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22⋊SD16
G = < a,b,c,d | a2=b2=c8=d2=1, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd=c3 >
Subgroups: 201 in 94 conjugacy classes, 31 normal (15 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C24, C22⋊C8, D4⋊C4, C22⋊Q8, C2×SD16, C22×D4, C22⋊SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C22≀C2, C2×SD16, C8⋊C22, C22⋊SD16
Character table of C22⋊SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ16 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 5)(2 10)(3 7)(4 12)(6 14)(8 16)(9 13)(11 15)
(1 13)(2 14)(3 15)(4 16)(5 9)(6 10)(7 11)(8 12)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 11)(2 14)(3 9)(4 12)(5 15)(6 10)(7 13)(8 16)
G:=sub<Sym(16)| (1,5)(2,10)(3,7)(4,12)(6,14)(8,16)(9,13)(11,15), (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,11)(2,14)(3,9)(4,12)(5,15)(6,10)(7,13)(8,16)>;
G:=Group( (1,5)(2,10)(3,7)(4,12)(6,14)(8,16)(9,13)(11,15), (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,11)(2,14)(3,9)(4,12)(5,15)(6,10)(7,13)(8,16) );
G=PermutationGroup([[(1,5),(2,10),(3,7),(4,12),(6,14),(8,16),(9,13),(11,15)], [(1,13),(2,14),(3,15),(4,16),(5,9),(6,10),(7,11),(8,12)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,11),(2,14),(3,9),(4,12),(5,15),(6,10),(7,13),(8,16)]])
G:=TransitiveGroup(16,155);
C22⋊SD16 is a maximal subgroup of
C24.103D4 C24.177D4 C24.106D4 (C2×D4)⋊21D4 C42.225D4 C42.228D4 C42.232D4 C42.352C23 C42.357C23 C23⋊4SD16 C24.126D4 C42.269D4 C42.273D4 A4⋊SD16
D2p⋊SD16: D4⋊7SD16 D6⋊5SD16 D6⋊6SD16 D20.8D4 D10⋊6SD16 D4.6D28 D14⋊6SD16 ...
(Cp×D4).D4: C4⋊C4.D4 D4.(C2×D4) C4.2+ 1+4 C4.152+ 1+4 D8⋊9D4 SD16⋊D4 SD16⋊6D4 D8⋊10D4 ...
C4⋊C4⋊D2p: C23⋊SD16 C24.9D4 D12.36D4 D20.36D4 D28.36D4 ...
(C2×C2p)⋊SD16: (C2×C4)⋊SD16 C42.222D4 C42.266D4 D12.31D4 D20.31D4 D28.31D4 ...
C8⋊pD4⋊C2: C24.121D4 C24.127D4 C42.275D4 C42.408C23 C42.410C23 ...
C22⋊SD16 is a maximal quotient of
D2p⋊SD16: D4⋊2SD16 D4.D8 D4⋊4SD16 D6⋊5SD16 D6⋊6SD16 D20.8D4 D10⋊6SD16 D4.6D28 ...
(Cp×D4).D4: C23⋊2SD16 Q8⋊D4⋊C2 C24.16D4 C4⋊C4.19D4 Q8⋊2SD16 D4.SD16 D4.3Q16 Q8⋊3SD16 ...
(C22×C2p).D4: C24.159D4 C24.160D4 (C2×Q8)⋊Q8 (C2×C8)⋊Q8 D12.31D4 D12.36D4 D20.31D4 D20.36D4 ...
Matrix representation of C22⋊SD16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 16 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 0 | 7 |
0 | 0 | 5 | 7 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 15 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[0,16,0,0,16,0,0,0,0,0,0,5,0,0,7,7],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,15,16] >;
C22⋊SD16 in GAP, Magma, Sage, TeX
C_2^2\rtimes {\rm SD}_{16}
% in TeX
G:=Group("C2^2:SD16");
// GroupNames label
G:=SmallGroup(64,131);
// by ID
G=gap.SmallGroup(64,131);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,362,963,489,117]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^8=d^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations
Export